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Abstract
Kepler’s 2nd law, the law of the areas, is usually taught in passing, between the 1st and the 3rd laws, to be explained
“later on” as a consequence of angular momentum conservation. The 1st and 3rd laws receive the bulk of attention; the
1st law because of the paradigm-shift significance in overhauling the previous circular models with epicycles of both
Ptolemy and Copernicus, the 3rd because of its convenience to the standard curriculum in having a simple
mathematical statement that allows for quantitative homework assignments and exams. In this work I advance a
method for teaching the 2nd law that combines the paradigm-shift significance of the 1st law and the mathematical
proclivity of the 3rd law. The approach is rooted in variational learning and the historical method, indeed, placed in its
historical context, Kepler’s 2nd is as revolutionary as the 1st: as the 1st law does away with the epicycle, the 2nd law
does away with the equant. This way of teaching the 2nd law also formulates the “time=area” statement quantitatively,
in the way of Kepler’s equation, M = E – e sin E, (relating mean anomaly M, eccentric anomaly E, and eccentricity e),
where the left-hand side is time and the right-hand side is area. In doing so, it naturally paves the way to finishing the
module with an active learning computational exercise, for instance, to calculate the timing and location of Mars’ next
opposition. This method is partially based on Kepler’s original thought, and should thus best be applied to
research-oriented students, such as junior and senior physics/astronomy undergraduates, or graduate students.

Keywords: Culture-Based Astronomy Education Research; Astronomy Laboratory Activities; Kepler’s Laws; Historical

Method; Variational Theory of Learning.

1 Introduction

Kepler’s 2nd law is arguably the most challenging of Kepler’s
laws to teach. Yu et al. (2010) found that, in a sample of 112 un-
dergraduate student interviews to gauge prior knowledge for
an introductory astronomy course, the majority (54%) declined
to even guess an answer when inquired about it. This contrasts
to the 1st and 3rd laws, where a majority of the same students
gave incomplete but correct statements about them (“orbits
are not circles”, and “planets orbiting closer to the Sun move
faster; those orbiting farther move slower”, respectively). While
the sample of Yu et al. (2010) was of nonmajor freshmen, the
2nd law remains underrated in upper division major undergrad-
uate courses, where students’ understanding of it still lingers

on the qualitative, and divorced from its historical significance.
In addition, Aktan and Dinçer (2014) find alternative concep-
tions about the 2nd law even among pre-service science teach-
ers. This evidences shortcomings about the way the law is tradi-
tionally explained. The 2nd law is frequently taught (e.g.: Carroll
and Ostlie, 2007; Ryden and Peterson, 2020) as a variation of
the following statement:

A line drawn from the Sun to a planet sweeps out equal areas in
equal time intervals.

This sentence is usually followed by diagrams showing short
wide areas near the Sun and long slender areas far away.
“They’re equal!”, says the instructor, almost like a curiosity. “Why
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is this important?”, asks the inquisitive student. Planets go fast
near the Sun and slow far from it, is the usual answer. It is
how it is described in popular astronomy books (e.g.: de Cayeux
and Brunier, 1983), in high school physics (e.g.: Kuhn, 1962;
Guimaraes and Fonte Boa, 2006), and in numerous educational
websites. In college, one walks the extra mile of proving from
Newton’s laws that Kepler’s 2nd simply reflects angular mo-
mentum conservation (e.g.: Halliday and Resnick, 2020; Marion
and Thornton, 2020). This is usually done by climbing down the
pedestal of differential and integral calculus to the pedestrian
world of Euclidian geometry and defining the strange concept
of “areal velocity”, which is then proved to be constant.

The historical inversion (Newton before Kepler) is rooted on
a discipline approach (Rice, 1972). By grounding Kepler’s 2nd
law on angular momentum conservation, it draws on principled
conceptual knowledge (Leinhardt, 1988), facilitating learning
by structuring it around a major concept of the discipline
of physics. On the other hand, teaching the material in this
way has the unfortunate drawback of reducing Kepler’s 2nd
law to a post-factum instead of presenting it as the product
of original logic, painstaking problem-solving, and what was
then cutting-edge research. These, in turn, are precisely
the skills that should be developed in high-ability students
(Dixon et al., 2004). More importantly, this presentation fails
to obviate that the 2nd law is about quantitatively finding
the planet in the orbit. In this paper I develop a model for
teaching Kepler’s second law using the historical method
(Matthews, 1989; Coelho, 2009; Galili, 2010). The proposed
teaching sequence partially recreates in the classroom the
historical perspective in which Kepler discovered the law in
Astronomia Nova (Kepler, 1609; Aiton, 1969; Boccaletti, 2001).

2 The Historical Method

The historical method (also called genetic approach) has a rich
record in physics. Mach (1895, 1911) and Duhem (1906) ar-
gued that retracing the original line of thought in discovering
the laws of nature led to a deeper understanding of the subject
by the novice students. The sentiment is echoed by Schwab
(1962), who defined teaching science as inquiry in its essence
as “to show some of the conclusions of science in the framework
of the way they arise and are tested”. Modern pedagogy frames
this postulate under the idea of cognitive recapitulation (Piaget,
1970; Posner et al., 1982): ontogeny recapitulates phylogeny,
i.e. there is a parallel between how an individual accrues knowl-
edge (ontogeny) and how the knowledge in the discipline itself
evolved (phylogeny).

Indeed, the way by which conceptual change is brought
about in learners (Posner et al., 1982) shares many similarities
with the structure of paradigm shifts (Kuhn, 1962). According
to Posner et al. (1982), learners have no urge to change their
conception until that conception fails at problem solving. This
is how scientific theories are constructed, thriving until anoma-
lous data is introduced, that cannot be accounted for by the pre-
vailing model. Also, the first response of learners to anomalous
data is not dismissal of the old conception, but questioning of
the data. This is mirrored by the healthy skepticism of the scien-
tific community, requiring extraordinary claims to be backed by
extraordinary evidence. Finally, once the quality of the new data
is established, learners arrive at a conceptual change when pre-
sented with a new theory that accounts for both the old and the
new data. This is epitomized by the correspondence principle
(Bohr, 1920), which requires a new theory to explain all the phe-
nomena for which a preceding theory was valid. Visibly, the his-
torical method retraces the development of the field, prompt-
ing the student to understand under what circumstances the

previous theory was judged convincing, and why a new theory
is necessary.

Equally important, by recreating the atmosphere of discov-
ery, the historical method inherently brings into the classroom
the culture of the field (Conant, 1964; Holton, 1978), informing
not only knowledge but also its structure: the deductive logic
and reasoning by which knowledge was constructed, older and
now obsolete principles and concepts, how they were replaced,
the thinking of generations of astronomers – Galili (2010) calls
this the periphery of the discipline, as opposed to the disci-
pline’s nucleus (axioms and laws) and body (applications).

Finally, research in human cognition shows that learning is
facilitated when presented with a contrast between alternatives
(Piaget, 1977; Zazkis and Chernoff, 2006; Mansouri et al., 2009;
Waxer and Morton, 2012), which is explained within the frame-
work of Variation Theory of Learning (Marton and Booth, 1997;
Pang and Marton, 2003; Marton et al., 2004; Marton and Pang,
2008; Orgill, 2012; Bussey et al., 2013; Cheng, 2016). Accord-
ing to variation theory, for learning to occur, some critical as-
pects of the object of learning must vary while other aspects
remain constant. This is exactly how scientists determine cause
and effect, mapping the parameter space by exploring one vari-
able at a time while holding all the other variables constant. As a
consequence, another reason the historical method is effective
as a teaching tool is because, in recreating the narrative that
led to the production of knowledge, it recreates the concep-
tual conflict that necessitated that knowledge (Monk and Os-
borne, 1997), while also using the tools of the scientific method
adapted to the classroom in the form of variational learning.

This paper is structured as follows. In the next section the
context of the study is presented, followed by the teaching de-
sign (the proposed teaching sequence), including exposition
and active learning exercises in the presentation for replicating
the method. I conclude with an assessment of student learning
and discussion.

3 Context of the Study

This method was originally developed as part of a one semester
course on dynamical astronomy for physics students in their
junior year, at a primarily undergraduate university in California,
in 2018. The class had 24 students. I taught it again twice for
first-year astronomy PhD students (ASTR 503, “Fundamental
Astronomy”) at New Mexico State University, in 2019, and
2020. I teach this in two classes of 75 minutes each, as part
of a module on Kepler’s laws. The first two times were taught
in person, the third time online in “flipped classroom” format
(King, 1993; the videos are available at https://www.youtube.
com/playlist?list=PLatuGW739E0lVsAwwqTHKU0tluD9h4c3I). To
com-plement the pre-class videos, typeset notes are also
provided (available at http://astronomy.nmsu.edu/wlyra/
FundamentalAstronomy/Module3_KeplerLaws_Notes.pdf). The
2019 class had 10 students, which provided a convenience
sample (Saumure and Given, 2008) to poll about the 2nd law.

The fundamental question that guides the module is a
question that intrigued humanity for millenia: how to predict
the position of the planets? The goal of the module is to
understand how Kepler’s laws connect to the emergence of
modern astronomy, to understand planetary motion, the inter-
play between theory and observations, and the fundamental
importance of observational accuracy. The module on Kepler’s
laws is done after a module on Spherical Astronomy, so the
students are familiar with coordinate systems on the celestial
sphere, and how to transform between equatorial and ecliptic
coordinates. I also introduce the concept of elongation, the
angle between the planet and the Sun. This serves the purpose
of introducing Ptolemy’s model, which is key to understanding

https://www.youtube.com/playlist?list=PLatuGW739E0lVsAwwqTHKU0tluD9h4c3I
https://www.youtube.com/playlist?list=PLatuGW739E0lVsAwwqTHKU0tluD9h4c3I
http://astronomy.nmsu.edu/wlyra/FundamentalAstronomy/Module3_KeplerLaws_Notes.pdf
http://astronomy.nmsu.edu/wlyra/FundamentalAstronomy/Module3_KeplerLaws_Notes.pdf
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Table 1. Initial conditions for the N-body code for computing the position and velocities of “real” Earth and Mars.

Planet Semimajor axis Eccentricity Inclination Position Velocity
(a) (e) (i) (xyz) (vx , vy , vz)

Earth 1.0000 0.0000 0 (1,0,0) (0,1,0)
Mars 1.5237 0.0934 0 (1.66601358,0,0) (0, 0.73768098,0)

the revolutionary character of Kepler’s 2nd law. For the junior
class I started with Owen Gingerich’s celebrated Mars lab
(Gingerich, 1983) to find Kepler’s 1st law in an active learning
way (Bonwell and Eison, 1991). For the PhD course, Gingerich’s
lab was done as a computational exercise. The lab is followed
by the geometrical proof that the orbit is an ellipse, again
using the historical method, with pre-Newtonian reasoning
(Appendix A). In the online version I could not provide drafting
tools to each student, so I created a video of the method
(available at https://www.youtube.com/watch?v=Ss-nmWFY5Wo&
list=PLatuGW739E0lVsAwwqTHKU0tluD9h4c3I&index=2), and we did
active learning in class showing how we would not be able to
discriminate between an ellipse and an off-centered circle with
the accuracy of common classroom drafting instruments. The
1st law lab and instruction set the stage for Kepler’s 2nd law.

4 Teaching Methods

The historical method was adopted in response to the unset-
tledness of teaching Kepler’s 2nd Law as a post-factum, and
with seemingly less importance than the 1st and the 3rd. The
1st law, the planets orbit the Sun in elliptical orbits with the
Sun at one of the two foci, has a clear and powerful paradigm-
shifting formulation. Its statement is a direct and unequivo-
cal breaking with the previous cosmological models, of both
Ptolemy and Copernicus, that insisted on circular orbits. The
3rd law, the cube of the semimajor axes is proportional to the
square of the periods, is formulated as an elementary mathe-
matical statement, and thus conveniently translated into quan-
titative homework assignments and exams, even at the high
school level. In contrast with the 1st and the 3rd, the sec-
ond law, the radius vector connecting the planet to the Sun
sweeps equal areas in equal times, sounds disturbingly turbid
to the modern student, its geometric statement a remnant of
a pre-calculus era. Transplanting ourselves to Kepler’s time by
putting aside Newtonian physics and knowledge of conserva-
tion of angular momentum, one should ask: why did Kepler
care about area? In the junior class in 2018 I asked the stu-
dents this question. No hands were raised. Not wanting to
repeat the usual way of teaching the 2nd law, and given how
other educators also struggle with how to present it (Setyadin
et al., 2020), I decided to teach it partially following the histor-
ical method to retrace Kepler’s original line of thought. In its
historical context, Kepler 2nd law is similar in formulation to
the 1st law in the sense that it is contrasted to the previous
model. The orbit is an ellipse contrasts to the orbit is a circle.
Likewise, equal areas at equal times contrasts to equal angles
at equal times. The 2nd law is formulated as a conceptual con-
flict. For 1500 years, up to Kepler, astronomy insisted not only
on circles but also on uniform motion. In Ptolemy’s model, to
account for the perceived non-uniform motion of a planet, he
introduced the equant, which is a point on the line of apsides
about which the center of the epicycle does uniform motion.
The practicality is that time is given by angle, so the motion of
the planet, though non-uniform from Earth’s reference frame,
is easily parametrized in time. The doctrine of uniform motion
was so prevalent that it was an a priori in Copernicus new he-
liocentric model: to do away with non-uniform motion and cast
all planetary movement as uniform circular motion in deferents

and epicycles about their centers. Astronomy up to Kepler had
it ingrained that there was a reference frame about which a
planet sweeps equal angles at equal times. That is the prior
model that the 2nd law contests. Imagine that you never heard
about circular orbits before. It would become difficult to under-
stand the paradigm-shifting impact of the 1st law. This lack of
awareness is precisely the situation a modern student encoun-
ters the 2nd law.

The remainder of this section will be presented for a flipped
classroom (King, 1993) format. In this style, content delivery is
removed from the in-person classroom time with the students,
which is used instead for discussion and active learning. The
method here developed to teach Kepler’s 2nd law shares sim-
ilarities with the presentation of the same subject by Holton
and Brush (1952). Our method, however, is more mathemat-
ically grounded and focuses on the correspondence principle
and conceptual conflict between the equant model and Ke-
pler’s 2nd law. A drawback of the method is the need to teach
the equant model, which many students (as well as instructors)
have little familiarity with. However, we minimized the time
needed to introduce the model, while also keeping it pedagog-
ical.

4.1 Presentation of the teaching sequence

Finding the shape of the orbit is not solving the whole prob-
lem of planetary motion. A practical question remains: how to
find the planet in the orbit? To better understand Kepler’s 2nd
law, let us look at what existed before him. Ancient wisdom in-
sisted in uniform circular motion, because it was their way to
understand periodicity. Regularity was found in circles, accord-
ing to Copernicus (1543), “the only figure that can bring back
the past”. Although it was apparent that the Sun (or the Earth
for that matter) was not the center of the orbit, the shape of
the ellipse was out of the reach of their observational accuracy.
Non-uniform motion along the orbit was also evident, and a so-
lution was found by Ptolemy, namely, the equant model. Most
modern astronomers are not familiar with this model, which is
nowadays only of historical importance, so a brief pedagogical
exposition is warranted. Let us get to it step by step. Along the
way, the students will do active learning exercises to understand
Kepler’s 2nd law. Like Kepler, we will use Mars in this study, be-
cause it is the superior planet of highest eccentricity and, added
bonus, also the closest one.

For the exercises presented in this section, the students will
use a N-body code of their choice – e.g., Rebound (Rein and Liu,
2012) or Mercury (Chambers, 2012); the plots here shown were
calculated with the Pencil Code (Brandenburg et al., 2021) –
and calculate the orbital evolution of the Earth and Mars. Earth
and Mars are test particles (zero mass), so the Sun’s position
coincides with the barycenter of the system. The results here
shown have Earth and Mars initialized at the position and ve-
locities given in Table 1, which are the position and velocity at
aphelion. The orbit of the Earth is approximated to zero eccen-
tricity, and the orbits of both planets to zero inclination. In these
units an Earth year is T = 2π. Run the simulation until time
t=100, which is approximately 16 Earth years. The students will
use this “real” Mars to compare to the different models.

The critical aspect that the instructor should make

https://www.youtube.com/watch?v=Ss-nmWFY5Wo&list=PLatuGW739E0lVsAwwqTHKU0tluD9h4c3I&index=2
https://www.youtube.com/watch?v=Ss-nmWFY5Wo&list=PLatuGW739E0lVsAwwqTHKU0tluD9h4c3I&index=2
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Figure 1. Elements of the different circular orbit models: (a) Sun-centered uniform circular motion about the Sun; (b) Off-centered uniform circular motion about
the center; (c) Off-centered uniform motion about the equant (point L). M is the mean anomaly and E the eccentric anomaly. On (a) and (b) the mean anomaly and
the eccentric anomaly are identical.

the students aware of is that the accuracy of ancient
observations was 1◦ , so any model that fits the po-
sitions of the planets to one degree accuracy will be
deemed acceptable. Otherwise, the model is rejected.

4.2 Starting simple: a sun-centered, circular
model

Let us assume that planets go in circular orbits, centered at the
Sun, in uniform motion (Fig. 1a). At any instant of time, the
position of Mars is given by:

x(t) = a cos M′(t) (1)

y(t) = a sin M′(t) (2)

Here M′ is measured counterclockwise from aphelion; it re-
lates to the mean anomaly M (measured counterclockwise from
perihelion) by M′ = M–180. The mean anomaly is M(t) = nt, with
t meaning time, and n = 2π

T is the mean motion, where T is the
period of Mars. Here, M, the mean anomaly, is equal to both the
eccentric and true anomalies. Another critical aspect to raise
awareness here is that everything but time in the definition of
mean anomaly is constant. Mean anomaly equals time. Mean
anomaly is time.

The students will compare this sun-centred circular model
with the “real” Mars they calculated from the N-body model. The
students should plot the ecliptic longitude of Mars in the sky,
which is:

λ = arctan
(

∆y
∆x

)
(3)

Where ∆y = y(t)Mars–y(t)Earth , and∆x = x(t)Mars–x(t)Earth ; i.e.
the relative position of Mars and the Earth. The students should
plot the four subplots of Figure 2. The upper left plot is λ vs time
for the two models (“real” Mars in red and the circular model of
Eqs 1 and 2 in black). The upper right plot is the deviation in
λ between the model and real Mars. The lower left plot is the
bird-eye heliocentric view of the orbits, i.e., y(t) vs x(t). The lower
right plot is the bird-eye geocentric view, i.e., ∆y vs ∆x.

From this exercise, the students should realize that the
model does not reproduce either the shape of the orbit or the
longitudes. The predicted positions of retrogradations, specifi-

cally, are off by as much as 30 degrees from the actual positions
of Mars. The students here discern that the circle model cannot
be correct, and conclude that the model has to be discarded.
The instructor can now introduce variation, fitting other mod-
els, and performing the same analysis to assess the adequacy
and accuracy of each model in reproducing the observations.

4.3 The Eccentre

The circular model failing, the instructor now introduces a new
model, the eccentre (Fig. 1b). The critical aspect is centredness:
this model merely shifts the position of the center of the orbit
away from the Sun by an amount ae, keeping the uniform mo-
tion. At any given instant in time, the position of Mars, seen from
the Sun, is now given by:

x(t) = a cos E′(t) + ae (4)

y(t) = a sin E′(t) (5)

where ae is the amount we shift the center away from the
Sun. Here E′ , like M′ , is measured counterclockwise from aphe-
lion; it relates to the eccentric anomaly E (measured counter-
clockwise from perihelion) by E′ = E – 180.

The students should compare this model with the “real”
Mars. They will plot the same graphs as Figure 2, but now with
this model. The results are seen in Figure 3, where the model
is shown in cyan. The students realize that the model repro-
duces the orbit, but it does not reproduce the velocity of Mars. It
predicts oppositions and retrogradations still off by 15 degrees.
Again, this model cannot be right, and the students discard the
model.

4.4 Non-uniform motion

Another variation will be introduced, keeping the eccentre,
since it reproduces the orbit, but relaxing the idea of uniform
motion in order to reproduce the orbital velocity. The instructor
now finally presents the equant model (Fig. 1c). To fit the ve-
locity of the planets, Ptolemy added a third device, the equant
point, defined as a point on the line of apsides about which
the angular velocity of a body on its orbit is constant. This
point is point L in Figure 1c. About L, the planet, located at
P, goes around in uniform motion, being described by the an-
gle M = nt. The eccentric anomaly E seen from the center of
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Figure 2. Mars orbit versus a circular Sun-centered orbit model. Upper left plot: Ecliptic longitude vs Time, Mars (red) vs circular orbit (black). The longitudes
generally match, except at retrogradations. Upper right plot: Longitude residual. The error amounts to as much as 30 degrees. The circular Sun-centered model is
not acceptable. Lower left plot: Heliocentric view of the orbit. Red is mars, blue is Earth, magenta the model. Lower right plot: Geocentric view of the orbit.

Figure 3. Mars orbit versus off-centered circular orbit model (the eccentre), keeping uniform motion. Upper left plot: Ecliptic longitude vs Time, Mars (red) vs circular
off-centered orbit (cyan). The longitudes generally match, except at retrogradations. Upper right plot: Longitude residual. The error is better than the Sun-centered
model, but still amounts to as much as 15 degrees. The off-centered model with uniform circular motion is not acceptable. Lower left plot: Heliocentric view of the
orbit. Red is mars, blue is Earth, green the model. Lower right plot: Geocentric view of the orbit.
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Table 2. Initial conditions for the N-body code for computing the
evolution seen in Fig 5. All planets are massless. The other orbital
elements (inclination, longitude of ascending node, and longitude
of perihelion) are assumed zero.

Planet Semimajor axis Eccentricity True Anomaly
(a) (e) (f )

Mercury 0.387098 0.20563 0◦

Venus 0.723332 0.006772 180◦

Earth 1.0000 0.0167 0◦

Mars 1.5237 0.0934 180◦

Jupiter 5.2044 0.0489 0◦

Saturn 9.582 0.0565 180◦

the orbit is related to M by noticing that the triangle ∆LCP has
angles CL̂P = 180◦ – M′ , and LP̂C = M′ – E′ . The side CP has
length equal to a, and the side LC has length equal to ae. The
students should find geometrically the relationship between ec-
centric and mean anomaly in this model. Applying the law of
sines:

sin (M′ – E′)
ae

=
sin M′

a
(6)

that is,

sin(M′ – E′) = e sin M′ (7)

Thus, solving for E

E′ = M′ – sin–1(e sin M′) (8)

At any time, the position of Mars, seen from the Sun, is again
given by Eqs (4) and (5), except that now E′(t) is non-uniform,
given by Eq. (8). Again, the students should graph this model in
comparison to “real” Mars. The result is shown in Figure 4. The
students visualize that agreement is achieved to within half a
degree. At this point the instructor should bring again to the
students’ focal awareness the critical aspect that Ptolemy did
not have accuracy under a degree (Høg, 2017); thus, the stu-
dents discern that the equant gives excellent agreement to the
observations.

An extra assignment could consist of plotting the results
of the equant model to the other planets visible in the pre-
telescope era, as shown in Figure 5. This figure was computed
with an equant for each planet. The “real” planets (Mercury,
Venus, Earth, Mars, Jupiter and Saturn) were initialized as shown
in Table 2, supposed massless, and alternating perihelion and
aphelion.

Each planet has its own equant – which simply reflects the
eccentricity of the orbit. Even in the case of Mercury, the planet
of highest eccentricity, the agreement with the observations is
satisfactory to the degree. The students should also conclude
from this exercise how appropriate Mars was as subject of Ke-
pler’s analysis. The critical aspect now is that Tycho’s observa-
tional data was accurate to 2 arcminutes (Høg, 2017). The in-
structor can ask: “based on this figure you produced, and know-
ing that Tycho’s observations were accurate to two arcminutes,
can you tell why Mars was appropriate for elucidating Kepler’s
laws?” The students should discern that, of the superior planets,
Mars is the one whose deviation more blatantly disagreed with
the prevailing model. Venus, Jupiter, and Saturn deviate by less
than 2 arcminutes, within the accuracy of Tycho’s data. Mercury,
never too far from the Sun, is simply too difficult to observe.

4.5 Optional

The instructor may want at this point to do a parenthetical com-
ment, returning for a moment to modern scientific parlance,
and noting that the equant model is a model accurate to first
order in eccentricity (Hoyle, 1973; Murray and Dermott, 1999).
At higher eccentricities the equant model will again start to de-
viate significantly from the observations. Figure 6 shows a hy-
pothetical planet of eccentricity e = 0.45. The equant model is
off by more than 10 degrees. While for e ∼ 0.2, like Mercury’s
orbit, the model is satisfactory down to 40 arcmin accuracy, for
e = 0.45 one would need higher order corrections. Kepler’s 2nd
law is the full solution.

4.6 The ellipse has no equant

Ptolemy’s solution had a very practical function. Given a point in
the line of apsides upon which the planet sweeps equal angles
in equal times, the orbit can be parametrized, as given by Eqs.
(4) and (5) with E given by Eq. (8). Kepler had two problems.
First, Tycho’s observations of Mars, accurate to 2 arcmins, did
not allow for the 30 arcmin error given by the equant model.
Second, his ellipses, with the planet speeding nearing perihe-
lion and slowing down nearing aphelion begged the question:
what is the equivalent to the equant? What is the point about
which a planet sweeps equal angles in equal times? Where is
the point along the line of apsides that we can say that angle
equals time? As it turns out, Kepler’s quest to answer this ques-
tion culminated with his 2nd law, that demolished the idea of
uniform motion. The answer is: there is no equant. For the el-
lipse, there is no point about which an observer will see equal
angles at equal times. Kepler’s first law does away with the
epicycle. Kepler’s second law does away with the equant. This
subsection is the one directly from Kepler’s Astronomy Nova. I
taught it in detail twice, before realizing that the level of detail
is unnecessary. What the students should know is that Kepler
tried to find the equant for the ellipse and failed to find it.
In trying to find out the location of Mars’ equant, Kepler again
made use of Tycho’s data. He took four observations of Mars
in opposition, at times t1 , t2 , t3 , andt4 , corresponding to mean
anomalies M1 , M2M3 , andM4 . The equant would be the unique
point on the line of apsides whence Mars is seen at these angles
(Fig. 7).

Yet, Kepler’s best fit with an “ellipse equant” model was
incompatible with the observations by 8 arcminutes, which
was inadmissible by Tycho’s 2 arcminute accuracy. Kepler had
to go back and question his assumptions. But the assumptions
were minimal. They amounted to:

1. Mars orbits the Sun;
2. Tycho’s observations are reliable;
3. The equant exists.

(1) and (2) were beyond doubt correct. The conclusion
was astonishing. The equant, a staple of astronomy for 1500
years, cannot exist. Kepler started this analysis by asking the
question: where is the equant? And the answer was: there
is no equant. There is no point about which we can say the
planet sweeps equal angles at equal times. Uniform motion
does not exist. Time is not given by angle. This is the aspect of
the second law that should be emphasized: it rules out 1500
years of the paradigm of uniform motion.
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Figure 4. Mars orbit versus off-centered circular orbit model, with uniform motion about the equant. Upper left plot: Ecliptic longitude vs time, Mars (red) vs equant
model (orange). Upper right plot: Longitude residual. The error is at most 30 arc minutes. Ptolemy’s accuracy was 1 degree. The model is acceptable. Lower left
plot: Heliocentric view of the orbit. Red is mars, blue is Earth, orange the equant model. Lower right plot: Geocentric view of the orbit. The equant model reproduces
location and time of retrogradations.

Figure 5. Residuals of the equant model for each planet. The residuals reflect orbital eccentricity. Even for Mercury, the most eccentric planet (e = 0.2), the equant
agrees with the observations down to 40 arcminutes.
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Figure 6. Validity of the equant model. A hypothetical planet (green) with orbital eccentricity 0.45, The equant model (orange) does not reproduce it well anymore.
The equant is a model accurate only to 1st order in eccentricity.

Figure 7. Kepler’s method to determine the location of Mars’ equant in an el-
liptic orbit, using four observations of Mars in opposition. The four dots in each
orbit represent the four observations; the motion is counterclockwise. Because
the Sun (S), Earth (blue orbit and dots), and Mars (red orbit and dots) are aligned,
the orange lines intersect at the Sun. Timing the observations yields the mean
anomalies M1 , M2 , M3 , M4 . Kepler then looked for the point L in the line of ap-
sides where Mars would be seen at exactly these angles, failing to find it. The
model could not be reconciled with the observations by 8 arcminutes, inadmis-
sible by Tycho’s 2 arcminute accuracy, forcing him to discard the equant model.
The eccentricity of Mars’ orbit is highly exagerated (∼ 0.4 instead of ∼ 0.1) for
clarity.

4.7 Time is equal area

Kepler had disproved fifteen centuries of “equal angles at equal
times”. That still leaves the problem of how to find the eccentric
anomaly as a function of time. In looking for something that
could be a measurement of time, Kepler stumbled on what this
something was.

Because planets are slower when far from the Sun and faster
when close, Kepler reasoned that the velocity was inversely pro-
portional to the distance, uα1

r . If that is the case, one can mul-
tiply both sides by time and write the proportionality:

u r tα t (9)

The quantity in the left-hand side, whatever it is, is linearly
proportional to time. It is the “something” sought in equal
“something” at equal times. But what is its interpretation?

The product ut is the length of the arc swung by the planet. If
the time is infinitesimal, t → dt, the arc is infinitesimal, dl = udt.
Then the Sun, the planet’s position at t and its position at t + dt
form a triangle, of area r dl/2. Comparing to Eq. (9), the quantity
u r dt = r dl that is linearly proportional to time is thus the area.
As a planet orbits the Sun, the area it sweeps is proportional to
time. Mean anomaly is not given by an angle. Mean anomaly is
given by an area.
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4.8 Kepler’s Equation

At this point the class becomes finding the mathematical state-
ment of Kepler’s equation. The critical aspect to focus on is that
the 2nd law is quantitative, relating the eccentric anomaly of
the planet (and consequently its true anomaly) to the mean
anomaly. The students have already studied in the 1st law the
geometry of the ellipse (Appendix A).

The mean anomaly is proportional to the area. The question
then is, how to compute the area? Kepler did not know calcu-
lus, so he could not calculate the area by summing the infinite
infinitesimal distances. But Kepler was an excellent geometer.
After he discovered that the orbit was an ellipse, he used the ge-
ometry of the ellipse to find out the area. Most students do not
know a proof that the area of the ellipse of semimajor axis a and
semiminor axis b is πab, so a short proof of it using integration
is shown in Appendix B.

Given that the planet sweeps equal areas at equal times, a
relation between mean anomaly (time) and area can be estab-
lished. A planet sweeping equal areas at equal times will, within
a time t, sweep an area

Asector = πab
t
T

(10)

where T is the orbital period. The question is, what is the area of
the sector? Consider Figure 8. The area swept from perihelion
(X) to point P is the area of the elliptic sector ASPX . We can relate
it to the area of the circular sector ASQX by using the relation
PH/QH = b/a.

ASPX =
b
a

ASQX (11)

The elliptic sector SQX can be broken down as the circular
sector CQX, minus the triangle ∆CSQ

ASQX = ACQX – ACSQ (12)

The circular sector CQX comprises an angle E of the full 2π

circle, so its area is

ACQX = πa2 E
2π

(13)

Figure 8. The true anomaly f is the angle, with vertex at the Sun, from perihelion
to the planet. The eccentric anomaly E is the angle with vertex at the center
of the orbit, from perihelion to the planet. Given the geometry of the ellipse,
PH/QH = b/a, where b is the semiminor axis and a is the semimajor axis.

As for the triangle ∆CSQ, its base is CS = ae, and height QH =
a sin E

ACSQ =
1
2

(ae) (a sin E) (14)

We thus find the area of the elliptic sector SPX,

ASPX =
ab
2

(E – e sin E) (15)

But because area equal time, ASPX = πabt
T . Equating both,

2π
t
T

= E – e sin E (16)

Given n = 2π
T , the left hand side is M = nt, the mean anomaly.

Thus,

M = E – e sin E (17)

This result is known asKepler’s equation. It is a direct conse-
quence of Kepler’s 2nd law, and can also be seen as Kepler’s 2nd
law itself. The left-hand side is time. The right-hand side is area.
After teaching Kepler’s 2nd this way, I gave as homework assign-
ment a computational exercise where students had to predict
the timing and location of Mars’ next opposition, given the or-
bital elements and the current position of Mars and the Sun.
I tested the method in both traditional and flipped classroom
(King, 1993) environments. In the latter, the lab was started in
an online class (taught during the 2020 pandemic of COVID-
19), with the students sharing a python jupyter notebook via
simultaneous video conferencing while freely debating. The
method is thus in line with active learning (Bonwell and Eison,
1991), constructivist learning theory (Simon, 1995), and struc-
tured in a multimodal framework, featuring: videos, which are
optimal for the visual/audio learners; notes, aimed at the reader
learners; team-based learning, which helps the social learners;
and coding exercises for the logical/math learners.

5 Assessment of Student Learning

A pre-and post- test was used in the graduate class adminis-
trated in 2019; the class had 10 students. The pre-test ques-
tionnaire had questions pertinent to all material covered in Fun-
damental Astronomy, among which one of the questions was
“What is the relevance of area in Kepler’s 2nd law?”, to be an-
swered discursively. The post-test was administrated after both
Kepler’s Laws and Celestial Mechanics modules, 3 weeks after
Kepler’s 2nd law was taught.

All students had the qualitative understanding of the law,
as expected from graduate students in a major astronomy re-
search institution, yet no one tied it to the crucial fact of find-
ing the true anomaly. Post-instruction, the answers varied little
from the pre-test, with 70% of the students repeating the “equal
areas equal times” response of the pre-test. 30% showed a dif-
ferent answer: that area “allows position of the planet to be de-
termined”, “is time”, and “shows there is no reference point from
which an object appears to orbit equal angles in equal times”.
Perhaps the question of the pre-and-post test could have been
better phrased. In contrast, anecdotal feedback I received so far,
as well as the degree of student comprehension on dealing with
Kepler’s equation, supports the approach. One student in par-
ticular approached me to say they found the lab “inspiring” and
“ really interesting”, adding in particular that they liked the way
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the class was taught, going through the historical development
of the ideas and the critical thinking involved. One student, after
the Mars opposition computational exercise, stated that “now I
finally understand Kepler’s 2nd law and how to use it”. Another
student said they liked how the class was taught “like research”.
Yet another student declared “mad respect” for Kepler after the
module.

6 Conclusion

In this work I constructed a way to teach Kepler’s 2nd law based
on the historical method. The perceived benefits of the ap-
proach are enumerated below.

1. It frames the teaching in terms of a conceptual conflict,
which research in human cognition shows is conducive to
more effective learning (Piaget, 1977; Waxer and Morton,
2012). The conflict is between the equant model (equal
angles) and Kepler’s 2nd law (equal areas).

2. Variational learning (Marton and Booth, 1997) is naturally
brought to the classroom. In a scientific experiment, the
impact of a variable is isolated by controlling its change
while holding all the other variables constant, and analyz-
ing the effect of the change. According to variational the-
ory, this parallels how students construct learning. In the
case in question, students explore different models until
a match between data and model is achieved to observa-
tional accuracy. The different models hold one aspect con-
stant while varying others (Sun centered/off-centered, and
uniform/non-uniform motion).

3. The method uses the correspondence principle (Bohr,
1920), making the students understand the validity and
limits of the equant model in its own historical frame-
work, as a valid model that reproduces the observations
up to about half a degree. The students understand why
it worked (a model accurate to first order in eccentricity)
and why it had to be discarded (when observational accu-
racy became better than the 40 arcminute accuracy given
by the model). Data of worse quality would not have been
able to discern between the equant model and Kepler’s
2nd law. As such, the approach also emphasizes to the
students the paramount importance of observational ac-
curacy.

4. The proposed approach highlights the revolutionary char-
acter of Kepler’s 2nd law: instead of repeating "equal ar-
eas in equal times" instructors can instead say "contrary to
1500 years of astronomical lore, there is no such thing as
equal angles in equal times. Kepler’s 1st law discards the
epicycle. Kepler’s 2nd law discards the equant. Area is how
you measure time and hence how you find the planet."

5. The approach is also rooted in mathematical grounding, as
“time = area” is stated not only through geometrical illus-
trations, but by Kepler’s equation (Eq. 17). Students can
then manipulate it quantitatively, as usually done for the
3rd law.

6. By recreating the atmosphere of discovery, the method
also frames the class in terms of cultural teaching
(Matthews, 1989; Galili, 2010), bringing into the class-
room the culture of astronomy. It is a narrative method
that reveals the inner workings of the minds of the pi-
oneers of the discipline, allowing their own voice to be
brought into the classroom. For instance, Kepler famously
wrote, in trying to locate the equant (Fig 7): “If this weari-
some method has filled you with loathing, it should more
properly fill you with compassion for me as I have gone
through it at least seventy times at the expense of a great
deal of time." That is a feeling that many a graduate stu-

dent can empathize with. Combining human reason and
emotion with the timeless elements of paradigm-shifting
research, namely, tension between theory and new data,
new data leading to a new theory, the new theory corre-
sponding to the previous theory in its limit of applicabil-
ity, this is a method that humanizes science and creates
a bridge between a student experience and that of the
greatest names in the history of the field.

Finally, on the limitations of the method, it has been said that
the inquiry method, of which the historical method is a sub-
set, is too difficult for any but the brightest students and that
by teaching discarded ideas it is prone to causing confusion
(Welch et al., 1981). Indeed, the method has been tested in up-
per division undergraduate and graduate studies only, so its ef-
fectiveness at lower division or general education courses is un-
constrained. Also, because Kepler’s equation is transcendental,
this method is best used in graduate curricula, where computa-
tional techniques are more routinely applied. Another criticism
is that scientists are not historians and, by attempting to teach
history of science we incur into the danger of teaching bad his-
tory (Matthews, 1989). Also, as stated by (Ausubel, 1968) “the
most important factor influencing learning is what the learner
already knows”. Indeed, resilience of previous conception is ob-
served, as 70% of students repeated the pre- and post-test an-
swer. The post-test was given after 3 weeks of instruction and af-
ter teaching Celestial Mechanics. It is unclear if the time elapsed,
the introduction of Newtonian physics, or the phrasing of the
question influenced this result.

7 Conclusion
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Appendix A: Elliptical orbits (Kepler’s 1st
law)

In this appendix, the instructor guides the demonstration that
the shape of the orbit is an ellipse. It works as active learning,
with the instructor giving to each student a sheet with the el-
liptic shape, and a set of drafting tools. This appendix is written
in teacher’s voice, guiding how to draw Figure 9 step by step.
The order: is AP, circle centered at A, PH, circle centered at B,
PQ, BQ, β = HB̂Q, QK , AK , AKQR, and finally β = AB̂R. A video
is available at https://www.youtube.com/watch?v=Ss-nmWFY5Wo&
list=PLatuGW739E0lVsAwwqTHKU0tluD9h4c3I&index=3.

Having found the orbit, Kepler had no idea what geometri-
cal shape it corresponded to. Yet, Kepler realized, through ge-
ometry, some properties this shape had. Consider Figure 9 (at
this point with the only the red curve drawn, points B, C, P, ma-
jor and minor axes; the focus A can be pre-drawn, or it can be
found with the compass, from point F and striking the line of ap-
sides with length BC, the semimajor axis). The Sun is at point A,
and Mars at point P. The segment AP, of length r, is the radius
vector from the Sun to the planet. The orbit is the red curve,
which, a priori, we do not know what shape it corresponds to.

https://www.youtube.com/watch?v=Ss-nmWFY5Wo&list=PLatuGW739E0lVsAwwqTHKU0tluD9h4c3I&index=3
https://www.youtube.com/watch?v=Ss-nmWFY5Wo&list=PLatuGW739E0lVsAwwqTHKU0tluD9h4c3I&index=3
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Figure 9. Kepler’s method to find the curve corresponding to Mars’ orbit. The
crucial insight was to realize that a perpendicular to BQ at Q is tangent to the cir-
cle centered at the Sun (A) and with radius r equal to the radius vector that joins
the Sun and the planet (P). The eccentricity of Mars’ orbit is highly exagerated
for clarity.

Some elements are:

1. The aphelion is point C;
2. The line of apsides is bisected at point B, the geometric

center of the curve;
3. The length of the segment BC is by definition a;
4. The length of the segment AB is by definition ae; e is the

eccentricity of the ellipse, but we do not know that yet. So
far e is an adhoc constant, the factor by which we need to
move the Sun away from the center.

What we want to find is AP, the radius vector of the orbit
(draw AP). Algebraically, one would call it r and try to find a math-
ematical relationship for it. Geometrically, one draws a circle.
This circle is centered at A and has radius AP (draw circle). We
do not need to find exactly AP; if we find the radius of this circle,
at any angle, we find the length of the radius vector. We trace
the circle in the hope that a geometric coincidence that helps
tell what the length r is becomes obvious.

Another way to find the shape of the curve is to find the coor-
dinates x and y of the planet, and uncover their mathematical
relation. We find the coordinate x by drawing the perpendicu-
lar from P to the line of apsides, defining point H (draw PH and
point H). The coordinates of P are x = BH and y = PH.

Next, we define the eccentric anomaly. For that we draw
the circumscribed circle, of center B and radius BC = a (draw
circle). We prolong the line PH until it intersects the circum-
scribed circle at point Q (draw PQ). The eccentric anomaly is
E = AB̂Q (draw BQ). We will also define the auxiliary angle
β = E – 180◦ = HB̂Q, (draw β). Given the triangle ∆BHQ, the
coordinate x is BQ cosβ. Given BQ = a, we found the first coor-
dinate.

x = a cosβ (18)

As for y, the triangle ∆AHP can be used. It is a right triangle
where AP = r is the hypotenuse; the catheti are PH = y, and
AH = AB + BH = ae + x. Thus,

Figure 10. The ratio PH/QH = yell/ycirc is equal to b/a, where b is the semiminor
axis and a the semimajor axis of the ellipse.

y2 = r2 – (ae + x)2 (19)

Eq 18 gives the value of x, but the value of the radius vec-
tor r is so far unknown. Kepler found r in an ingenious way. He
realized something curious: the perpendicular to BQ at Q is tan-
gent to the circle of center A and radius r. (prolong BQ and draw
the perpendicular)

Let K be the tangential point (draw K). Since AK is a radius
(draw AK), then AP = AK = r. So, if we find AK , we find the value
of r. Because QK is tangent to the circle, AK̂Q is a right angle.
Kepler then prolonged the radius BQ to construct the rectan-
gle AKQR (draw the rectangle and define R). Because this is a
rectangle, AK = QR = r. The length QR is the sum of the radius
(BQ = a) and the length BR. This length is given by the right
triangle ∆ARB. The hypothenuse is AB = ae, and the cathetus
BR = ae cosβ (draw AB̂R = β). We find thus AP = BQ + BR, or
r = a + ae cosβ. Given β = E – 180◦ .

r = a(1 – e cos E) (20)

Having found the radius vector, we substitute Eq. 20 and Eq.
18 into Eq. 19, finding

y2 = a2(1 – e2) sin2 E (21)

We can then write cos2 E = x2/a2 , and sin2 E = y2/[a2(1–e2)]
and invoke the trigonometric equality sin2 E + cos2 E = 1 to find
the relationship between the coordinates

x2

a2 +
y2

a2(1 – e2)
= 1 (22)

This is the equation of an ellipse. The semimajor axis is a, and
the semiminor axis is b = a(1 – e2)1/2 .

AppendixB : Short proof of the area of the
ellipse

Consider Figure 10. The main insight is that PH/QH = b/a,
which is seen because CQ = a, and thus QH = a sin E, and we
have already proven (Eq 21) that PH = a(1 – e2)1/2 sin E = b sin E.
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The area Ac of the circle is 4 times the area of the quadrant. The
area of the quadrant can be found by integrating the vertical
distances yc from x = 0 to x = a.

Ac = 4
∫a

0
yc dx (23)

Given yc = a sin E and x = a cos E, then Ac = πa2 , as expected.
The area of the ellipse is

Ae = 4
∫a

0
ye dx (24)

Because we can write ye = b/a yc , then

Ae = 4
b
a

∫a

0
yc dx =

b
a

Ac = πab (25)
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